Abstract
AbstractEighteen nuclear‐encoded microsatellites from a genomic DNA library of greater amberjack, Seriola dumerili, were isolated and characterized. The microsatellites include 13 perfect (five tetranucleotide and eight trinucleotide) and five imperfect (three tetranucleotide, one trinucleotide and one combination dinucleotide/trinucleotide) repeat motifs. The number of alleles at the 18 microsatellites among a sample of 29 fish ranged from two to 20; gene diversity (expected heterozygosity) ranged from 0.068 to 0.950, whereas observed heterozygosity ranged from 0.069 to 0.966. Following Bonferroni correction, genotypes at all 18 microsatellites fit expectations of Hardy–Weinberg equilibrium, and all pairwise comparisons of microsatellites did not deviate significantly from genotypic equilibrium. Greater amberjack support commercial and recreational fisheries along both the Atlantic and the Gulf coasts of the USA and represent a species with potential for worldwide aquaculture. The microsatellites developed will be useful for population genetic studies of ‘wild’ populations and breeding studies of domesticated populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.