Abstract
Deoxyuridine triphosphate derivatives (dUTPs) modified at the C5 position of the pyrimidine ring with various aromatic hydrocarbon substituents of different hydrophilicities have been synthesized. The aromatic hydrocarbon substituents were attached to dUTPs via a CHCHCH2NHCOCH2 linker. The efficiency of the PCR incorporation of modified dUMPs using Taq, Tth, Vent (exo-) and Deep Vent (exo-) polymerases and a model DNA template containing one, two and three adjacent adenine nucleotides at three different sites within the sequence was investigated. For all the polymerases used, the yield of the modified PCR product was significantly increased with increasing hydrophilicity of the aromatic hydrocarbon substituent. In particular, for the above polymerases, the efficiency of the incorporation of dUMPs modified with the most hydrophilic of the studied aromatic hydrocarbon substituents, a 4-hydroxyphenyl residue, was 60-85% of the efficiency of dTMP incorporation. At the same time, the relative efficiencies of the incorporation of dUMPs modified with 2-, 4-methoxyphenyl, phenyl and 4-nitrophenyl substituents ranged from 20 to 50% and were 2-18% for the 1-naphthalene and 4-biphenyl groups, which were the most hydrophobic of the studied aromatic hydrocarbon substituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.