Abstract

RGD-PCP copolymers were fabricated by grafting Arg-Gly-Asp (RGD) peptide to poly(ε-caprolactone)-b-chitooligosaccharide-b–poly(ethylene glycol) (PCP) copolymers and the rate of internalization of RGD-PCP micelles by PC 12 cells were examined. Increasing intensity of the absorbance of amine groups in FT-IR spectra of RGD-PCP copolymers compared with those of PCP copolymers indicated the presence of RGD in new copolymers. Moreover, the grafting efficiency and molar ratio of RGD peptides to PCP copolymers were 88.2% and 0.45, respectively, analysed with HPLC. The RGD-PCP copolymers self-assemble to micelles at the critical micelle concentration (CMC) of 0.018 wt% (178 mg L−1) and with a mean diameter of 90 nm using a dynamic light-scattering (DLS) analyser. Interestingly, the internalization of DPH-loaded RGD-PCP micelles into PC 12 cells is much faster (e.g. within 5 min) than that of PCP micelles. The new RGD-PCP micelles may potentially be used in cellular drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.