Abstract

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Women with PCOS have a 2.7-fold increased risk for developing endometrial cancer (EC). This study was performed to investigate the potential stimulatory effects of serum exosomes isolated from patients with PCOS on EC cell lines and to explore the underlying mechanism. EC cell lines exposed to exosomes derived from PCOS patients serum exhibited an enhanced migration and invasion phenotype. Next, sequence-based analysis of exosomal miRNA was conducted to screen the differentially expressed miRNAs in serum exosomes from PCOS patients and normal controls. The levels of 55 mature miRNAs significantly differed in serum exosomes from PCOS patients compared with those from normal controls. Real-time PCR was used to verify the expression of eight of these miRNAs, among which miR-27a-5p was the most significantly elevated in PCOS patients serum exosomes. The role of miR-27a-5p in EC migration and invasion was further investigated via miR-27a-5p mimics or inhibitor transfection in Ishikawa and HEC-1A EC cell lines. In addition, the SMAD4 gene was identified as the target of miR-27a-5p by several target prediction databases and was validated by a luciferase assay. SMAD4 mRNA and protein levels were downregulated in EC cells transfected with the miR-27a-5p mimics, but upregulated in cells transfected with the miR-27a-5p inhibitor. Furthermore, in vitro experiments results confirmed that miR-27a-5p prohibited migration and invasion via SMAD4 downregulation. Thus, serum exosomal miR-27a-5p may play a role in EC development in PCOS patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.