Abstract

Super-resolution microscopy has revolutionized biological imaging enabling direct insight into cellular structures and protein arrangements with so far unmatched spatial resolution. Today, refined single-molecule localization microscopy methods achieve spatial resolutions in the one-digit nanometer range. As the race for molecular resolution fluorescence imaging with visible light continues, reliable biologically compatible reference structures will become essential to validate the resolution power. Here, PicoRulers (protein-based imaging calibration optical rulers), multilabeled oligomeric proteins designed as advanced molecular nanorulers for super-resolution fluorescence imaging are introduced. Genetic code expansion (GCE) is used to site-specifically incorporate three noncanonical amino acids (ncAAs) into the homotrimeric proliferating cell nuclear antigen (PCNA) at 6nm distances. Bioorthogonal click labeling with tetrazine-dyes and tetrazine-functionalized oligonucleotides allows efficient labeling of the PicoRuler with minimal linkage error. Time-resolved photoswitching fingerprint analysis is used to demonstrate the successful synthesis and DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) is used to resolve 6nm PCNA PicoRulers. Since PicoRulers maintain their structural integrity under cellular conditions they represent ideal molecular nanorulers for benchmarking the performance of super-resolution imaging techniques, particularly in complex biological environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.