Abstract

This paper investigates the stochastic path following control of underactuated marine vehicles (UMVs) subject to multiple disturbances and constraints. Firstly, the complex marine environment in which UMVs navigate typically contains stochastic components, thus the multiple disturbances are categorized as slow-varying deterministic disturbances and stochastic disturbances. Secondly, a position-constrained line-of-sight (PCLOS) based fractional-order sliding mode stochastic (FSMS) control strategy is established to achieve path following control of UMVs. A PCLOS guidance law based on universal barrier Lyapunov function is proposed to ensure that the position errors remain within the constraint ranges, which is versatile for systems with symmetric constraints or without constraints. An FSMS controller based on fractional-order theory and sliding mode control is designed to improve the dynamic response speed of the system and effectively attenuate chattering phenomenon. A stochastic disturbance observer is developed to estimate the slow-varying deterministic disturbances in the stochastic system, and auxiliary dynamic compensators are used to mitigate the impact of input constraints. Lastly, theoretical analysis indicates that the closed-loop system is stable and the position constraint requirements are satisfied. Comparative simulations illustrate the effectiveness of the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.