Abstract

Poor solubility and low dissolution rate of ibuprofen (IBU) in the aqueous gastro-intestinal fluids restrict its application, absorption, distribution, target organ delivery, and bioavailability. For improvement of aqueous solubility of IBU, supramolecular nanocontainers of IBU/cyclodextrin were prepared via formation of inclusion complex between ibuprofen and cyclodextrins (α-cyclodextrin and β-cyclodextrin) at various conditions (at room temperature at 25℃ and under sonic energy). The formation of inclusion complex between IBU and cyclodextrins can be confirmed by hydrogen nuclear magnetic resonance, differential scanning calorimetry, fourier transform Infrared spectroscopy (FTIR), X-ray diffraction, and scanning electron microscopy study. FTIR of pure IBU and cyclodextrins is similar to the obtained complex, which indicated intactness of drug in the complex. The encapsulation of IBU in cyclodextrins cavity improved its solubility, phase solubility, and in vitro dissolution and also controlled its release which ensures the long-term delivery. Electro-spun nanofibers of poly-ɛ-caprolactone containing IBU/cyclodextrins is a promising method for controlled drug delivery electro-spun which is bead-free without any aggregation on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.