Abstract

In this paper, we propose a new framework of target classification for a passive coherent location(PCL) radar network. The framework uses radar cross sections(RCSs) obtained from multiple bistatic radars, and is computationally more efficient compared with the conventional method that uses time-varying RCSs obtained from a monostatic radar. Firstly, we construct the training set of the bistatic RCS distribution of each target using the scenario-based method and a PCL radar network with multiple transmitters and a receiver. Next, assuming that a test sequence consists of bistatic RCSs, we classify each target using statistical hypothesis test algorithms, such as Z-test, Wilcoxon test, and sign test. The proposed framework demonstrated better performance than the conventional method, in terms of computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.