Abstract

AbstractBug triaging is a vital process in software maintenance, involving assigning bug reports to developers in the issue tracking system. Current studies predominantly treat automatic bug triaging as a classification task, categorizing bug reports using developers as labels. However, this approach deviates from the essence of triaging, which is establishing bug–developer correlations. These correlations should be explicitly leveraged, offering a more comprehensive and promising paradigm. Our bug triaging model utilizes graph collaborative filtering (GCF), a method known for handling correlations. However, GCF encounters two challenges in bug triaging: data sparsity in bug fixing records and semantic deficiency in exploiting input data. To address them, we propose PCG, an innovative framework that integrates prototype augmentation and contrastive learning with GCF. With bug triaging modeled as predicting links on the bipartite graph of bug–developer correlations, we introduce prototype clustering‐based augmentation to mitigate data sparsity and devise a semantic contrastive learning task to overcome semantic deficiency. Extensive experiments against competitive baselines validate the superiority of PCG. This work may open new avenues for investigating correlations in bug triaging and related scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.