Abstract

With the advent of the powerful editing software and sophisticated digital cameras, it is now possible to manipulate images. Copy-move is one of the most common methods for image manipulation. Several methods have been proposed to detect and locate the tampered regions, while many methods failed when the copied region undergone some geometric transformations before being pasted, because of the de-synchronization in the searching procedure. This paper presents an efficient technique for detecting the copy-move forgery under geometric transforms. Firstly, the forged image is divided into overlapping circular blocks, and Polar Complex Exponential Transform (PCET) is employed to each block to extract the invariant features, thus, the PCET kernels represent each block. Secondly, the Approximate Nearest Neighbor (ANN) Searching Problem is used for identifying the potential similar blocks by means of locality sensitive hashing (LSH). In order to make the algorithm more robust, morphological operations are applied to remove the wrong similar blocks. Experimental results show that our proposed technique is robust to geometric transformations with low computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.