Abstract

Ethanol (EtOH) exposure during embryonic development causes dysfunction of the central nervous system (CNS). Here, we examined the effects of chronic EtOH on gene expression during early stages of neuronal differentiation. Human embryonic carcinoma (NCCIT) cells were differentiated into neuronal precursors/lineages in the presence or absence of EtOH and folic acid. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early brain development. EtOH exposure downregulated several important genes, such as PCDHB14, GABRB1, CTNND2, NAV3, RALDH1, and OPN5, which are involved in CNS development, synapse assembly, synaptic transmission, and neurotransmitter receptor activity. GeneGo pathway analysis revealed that the deregulated genes mapped to disease pathways that were relevant to fetal alcohol spectrum disorders (FASD, such as neurotic disorders, epilepsy, and alcohol-related disorders). In conclusion, these findings suggest that the impairment of the neurological system or suboptimal synapse formation resulting from EtOH exposure could underlie the neurodevelopmental disorders in individuals with FASD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.