Abstract

Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured at ~300 meters water depth or more) and temperature is relatively low (but generally above freezing). The concentration of methane can be high enough to make certain gas hydrate occurrences potentially relevant as energy resources. To extract methane from gas hydrate, the in situ formation (generally a coarse-grained, gas-hydrate-bearing sediment interval) can be depressurized by drawing pore water out through a production well. As the pore pressure falls below the gas hydrate stability limit, the solid gas hydrate breaks down, releasing gas and water that migrate toward the production well for collection. How effectively the production well can depressurize the gas-hydrate-bearing interval depends on how permeable the overlying seal sediment is. If the seal is permeable, depressurizing the reservoir to extract methane causes water to flow out of the seal and into the reservoir. This can limit the ability of the production well to maintain the low reservoir pressure required to break down gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.