Abstract

BackgroundThe Corpus callosum (Cc) in the cerebral cortex is a bundle of neural fibers that facilitates inter-hemispheric communication. The Cc area and area of its sub-regions (also known as parcels) have been examined as a biomarker for cortical pathology and differential diagnosis in neurodegenerative diseases such as Autism, Alzheimer’s disease (AD), and more. Manual segmentation and parcellation of Cc are laborious and time-consuming. The present work proposes a novel work of automated parcellated Cc (PCc) segmentation that will serve as a potential biomarker to study and diagnose neurological disorders in brain MRI images. MethodIn this perspective, the present work aims to develop an automated PCc segmentation from mid-sagittal T1- weighted (w) 2D brain MRI images using a deep learning-based fully convolutional network, a modified residual attention U-Net, referred to as PCcS-RAU-Net. The model has been modified to use a multi-class segmentation configuration with five target classes (parcels): rostrum, genu, mid-body, isthmus and splenium. ResultsThe experimental research uses two benchmark MRI datasets, ABIDE and OASIS. The proposed PCcS-RAU-Net outperformed existing methods on the ABIDE dataset with a DSC of 97.10% and MIoU of 94.43%. Furthermore, the model's performance is validated on the OASIS and Real clinical image (RCI) data and hence verifies the model’s generalization capability. ConclusionThe proposed PCcS-RAU-Net model extracts essential characteristics such as the total area of the Cc (TCcA) to categorize MRI slices into healthy controls (HC) and disease groups. Also, sub-regional areas, Cc1A to Cc5A, help study atrophy progression for early diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.