Abstract

Elevated free fatty acids (FFAs) are fundamental to the pathogenesis of hepatic insulin resistance. However, the molecular mechanisms of insulin resistance remain not completely understood. Transcriptional dysregulation, post-transcriptional modifications and protein degradation contribute to the pathogenesis of insulin resistance. Poly(C) binding proteins (PCBPs) are RNA-binding proteins that are involved in post-transcriptional control pathways. However, there are little studies about the roles of PCBPs in insulin resistance. PCBP2 is the member of the RNA-binding proteins and is thought to participate in regulating hypoxia inducible factor-1 (HIF-1α) and signal transducers and activators of transcription (STAT) pathway which are involved in regulating insulin signaling pathway. Here, we investigated the influence of PCBP2 on hepatic insulin resistance. We showed that the protein and mRNA levels of PCBP2 were down-regulated under insulin-resistant conditions. In addition, we showed that over-expression of PCBP2 ameliorates palmitate (PA)-induced insulin resistance, which was indicated by elevated phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β). We also found that over-expression of PCBP2 inhibits HIF1α and STAT3 pathway. Furthermore, glucose uptake was found to display a similar tendency with the phosphorylation of Akt. The expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two key gluconeogenic enzymes, were down-regulated following Over-expression of PCBP2. Accordingly, PA-induced intracellular lipid accumulation was suppressed in over-expression of PCBP2 HepG2 cells. In addition, we found that over-expression of PCBP2 inhibits HIF1α and STAT3 pathway. Our results demonstrate that PCBP2 was involved in hepatic insulin sensitivity might via HIF-1α and STAT3 pathway in HepG2 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.