Abstract

3,3',4,4',5-Pentachlorobiphenyl (PCB126), a dioxin-like polychlorinated biphenyl (PCB) and a potent aryl hydrocarbon receptor (AhR) agonist, is implicated in the disruption of both carbohydrate and lipid metabolism which ultimately leads to wasting disorders, metabolic disease, and nonalcoholic fatty liver disease. However, the mechanisms are unclear. Because liver is the target organ for PCB toxicity and responsible for metabolic homeostasis, we hypothesized that early disruption of glucose and lipid homeostasis contributes to later manifestations such as hepatic steatosis. To test this hypothesis, groups of male Sprague Dawley rats, fed on AIN-93G diet, were injected (intraperitoneal.) with a single bolus of PCB126 (5 µmol/kg) at various time intervals between 9 h and 12 days prior to euthanasia. An early decrease in serum glucose and a gradual decrease in serum triglycerides were observed over time. Liver lipid accumulation was most severe at 6 and 12 days of exposure. Transcript levels of cytosolic phosphoenol-pyruvate carboxykinase (Pepck-c/Pck1) and glucose transporter (Glut2/Slc2a2) involved in gluconeogenesis and hepatic glucose transport were time-dependently downregulated between 9 h and 12 days of PCB126 exposure. Additionally, transcript levels of Pparα, and its targets acyl-CoA oxidase (Acox1) and hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2), were also downregulated, indicating changes in peroxisomal fatty acid oxidation and ketogenesis. In a separate animal study, we found that the measured changes in the transcript levels of Pepck-c, Glut2, Pparα, Acox1, and Hmgcs2 were also dose dependent. Furthermore, PCB126-induced effects on Pepck-c were demonstrated to be AhR dependent in rat H4IIE hepatocytes. These results indicate that PCB126-induced wasting and steatosis are preceded initially by (1) decreased serum glucose caused by decreased hepatic glucose production, followed by (2) decreased peroxisomal fatty acid oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.