Abstract

Polychlorinated biphenyls (PCBs), a group of highly toxic environmental pollutants, have been report to influence the visual system development in children. However, the underlying mechanism is unclear. The study was aim to investigate the effects of continuous PCBs exposure on optomotor response (OMR) and retinal photoreceptor cell development-related gene expression in zebrafish larvae. The fertilized zebrafish embryos were exposed to PCBs at concentrations of 0.125, 0.25, 0.5, and 1mg/L until 7 days post-fertilization. Control groups with blank and 0.01% methanol were also prepared. OMR test was used to detect the visual behavior. The mRNA expression of the CRX, RHO, SWS1, and SWS2 was assessed by the Quantitative Real-Time PCR. The OMR test showed that the visual behavior of the larvae was most sensitive when the grating spatial frequency was 0.20LP/mm and the moving speed was 25cm/s. Moreover, the proportion of positively swimming fish was significantly reduced in the 0.5 and 1mg/L PCB1254 treatment group (P<0.05) compared with the controls. In addition, the expression of SWS2 was significantly down-regulated in all PCB1254 treatment groups (P<0.05), whereas the decreased expression of the CRX, RHO and SWS1 was found in the 0.5 and 1mg/L PCB1254 groups (P<0.05). This is the first report to demonstrate that continue exposure of zebrafish larvae to PCBs causes photoreceptor cell development-related gene expression changes that lead to OMR behavioral alterations. Analysis of these visual behavioral paradigms may be useful in predicting the adverse effects of toxicants on visual function in fish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call