Abstract

The decoupling of modern printed circuit boards introduces a very complex task. Powerful stochastic optimizers are usually used to determine values and positions of decoupling capacitors on the board. The number of capacitors used has to be determined a priori by the user which brings problems with convergence of the optimization process or can lead to a waste of resources when the noises are to be attenuated to a certain level. In this paper, an approach based on the combination of time-domain contour integral method and optimization with variable number of dimensions is introduced. The optimizer works with models having variable dimensions and searches for the optimal one. The approach is tested on two example power circuit boards with various noise attenuation limits and constraints on capacitor positions and values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call