Abstract

BackgroundPolychlorinated biphenyls (PCBs) are persistent organic pollutants. Due to their lipophilic character, they are preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules.Methodology/Principal FindingsDifferentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually, did not seem to be influenced by the presence of other congeners within adipocytes.Conclusion/SignificanceThese results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis, in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release from adipocytes.

Highlights

  • Polychlorinated biphenyls (PCBs) are a class of environmentally persistent pollutants that biomagnify throughout food chains

  • Incorporation of PCBs in adipocytes At day 10, differentiated rat adipocytes were exposed to four different treatments of PCBs during a 12-hour period

  • Since the dynamics of accumulation of PCBs in cells vary with cellular lipid content [26], the levels of cellular neutral lipids (NLs) were quantified and no statistical difference was noted (0.457,p, 0.978) (Table 1)

Read more

Summary

Introduction

Polychlorinated biphenyls (PCBs) are a class of environmentally persistent pollutants that biomagnify throughout food chains. The cytoplasm of adipocytes is almost exclusively composed of lipid droplets (LDs) [3], which appear to be the principal targets for PCBs [4]. These cells have an enormous capacity to accumulate lipophilic pollutants [5]. Evidence from wildlife indicates same trends [8,9,10,11,12,13,14] This phenomenon suggests that PCBs are less efficiently mobilised from adipocytes than fatty acids. Polychlorinated biphenyls (PCBs) are persistent organic pollutants Due to their lipophilic character, they are preferentially stored within the adipose tissue. The present in vitro experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call