Abstract
A histogram of oriented gradient (HOG) feature is applied to the field of diseased cell detection, which can detect diseased cells in high resolution tissue images rapidly, accurately and efficiently. Firstly, motivated by symmetrical cellular forms, a new HOG symmetrical feature based on the traditional HOG feature is proposed to meet the condition of cell detection. Secondly, considering the high feature dimension of traditional HOG feature leads to plenty of memory resources and long runtime in practical applications, a classical dimension reduction method called principal component analysis (PCA) is used to reduce the dimension of high-dimensional HOG descriptor. Because of that, computational speed is increased greatly, and the accuracy of detection can be controlled in a proper range at the same time. Thirdly, support vector machine (SVM) classifier is trained with PCA-HOG symmetrical features proposed above. At last, practical tissue images is detected and analyzed by SVM classifier. In order to verify the effectiveness of this new algorithm, it is practically applied to conduct diseased cell detection which takes 200 pieces of H&E (hematoxylin & eosin) high resolution staining histopathological images collected from 20 breast cancer patients as a sample. The experiment shows that the average processing rate can be 25 frames per second and the detection accuracy can be 92.1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.