Abstract

METTL3 methylates RNA and regulates the fate of mRNA through its methyltransferase activity. METTL3 enhances RNA translation independently of its catalytic activity. However, the underlying mechanism is still elusive. Here, we report that METTL3 is both interacted with and acetylated at lysine 177 by the acetyltransferase PCAF and deacetylated by SIRT3. Neither the methyltransferase activity nor the stability of METTL3 is affected by its acetylation at K177. Importantly, acetylation of METTL3 blocks its interaction with EIF3H, a subunit of the translation initiation factor, thereby reducing mRNA translation efficiency. Interestingly, acetylation of METTL3 responds to oxidative stress. Mechanistically, oxidative stress enhances the interaction of PCAF with METTL3, increases METTL3 acetylation, and suppresses the interaction of METTL3 with EIF3H, thereby decreasing the translation efficiency of ribosomes and inhibiting cell proliferation. Altogether, we suggest a mechanism by which oxidative stress regulates RNA translation efficiency by the modulation of METTL3 acetylation mediated by PCAF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.