Abstract
Most of the existing approaches of multimodal 2D + 3D face recognition exploit the 2D and 3D information at the feature or score level. They do not fully benefit from the dependency between modalities. Exploiting this dependency at the early stage is more effective than the later stage. Early fusion data contains richer information about the input biometric than the compressed features or matching scores. We propose an image recombination for face recognition that explores the dependency between modalities at the image level. Facial cues from the 2D and 3D images are recombined into a more independent and discriminating data by finding transformation axes that account for the maximal amount of variances in the images. We also introduce a complete framework of multimodal 2D + 3D face recognition that utilizes the 2D and 3D facial information at the enrollment, image and score levels. Experimental results based on NTU-CSP and Bosphorus 3D face databases show that our face recognition system using image recombination outperforms other face recognition systems based on the pixel- or score-level fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.