Abstract
A balanced chromosomal translocation, segregating with mental illnesses in a large Scottish family, interrupts the disrupted-in-schizophrenia 1 (DISC1) gene, which would result in loss of DISC1 function via haploinsufficiency or dominant-negative effects (or possibly could cause gain-of-function effects) if a truncated protein is present. To evaluate the effects of a predicted protein, mutant DISC1, we generated stable PC12 cell clones with inducible expression of mutant or full-length human DISC1 (hDISC1). Our study presents new observations that the inhibitory effects of mutant hDISC1 on NGF-induced neurite outgrowth are dependent on the level and timing of expression of mutant DISC1 and the concentrations of NGF, and are associated with altered sub-cellular distribution of endogenous DISC1 and ATF4, and decreased protein levels of LIS1. Thus, inducible expression of DISC1 in PC12 cell clones is a valuable in vitro model for further studying the molecular mechanisms likely due to loss of function of DISC1 relevant to the pathogenesis of major mental illnesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.