Abstract
Information on toxicokinetics is critical for animal-free human risk assessment. Human external exposure must be translated into human tissue doses and compared with in vitro actual cell exposure associated to effects (in vitro–in vivo comparison). Data on absorption, distribution, metabolism and excretion in humans (ADME) could be generated using in vitro and QSAR tools. Physiologically-based toxicokinetic (PBTK) computer modelling could serve to integrate disparate in vitro and in silico findings.However, there are only few freely-available PBTK platforms currently available. And although some ADME parameters can be reasonably estimated in vitro or in silico, important gaps exist. Examples include unknown or limited applicability domains and lack of (high-throughput) tools to measure penetration of barriers, partitioning between blood and tissues and metabolic clearance.This paper is based on a joint EPAA – EURL ECVAM expert meeting. It provides a state-of-the-art overview of the availability of PBTK platforms as well as the in vitro and in silico methods to parameterise basic (Tier 1) PBTK models. Five high-priority issues are presented that provide the prerequisites for wider use of non-animal based PBTK modelling for animal-free chemical risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.