Abstract
Neuromorphic light sensors with analogue-domain image processing capability hold promise for overcoming the energy efficiency limitations and latency of von Neumann architecture-based vision chips. Recently, metal halide perovskites, with strong light-matter interaction, long carrier diffusion length, and exceptional photoelectric conversion efficiencies, exhibit reconfigurable photoresponsivity due to their intrinsic ion migration effect, which is expected to advance the development of visual sensors. However, suffering from a large bandgap, it is challenging to achieve highly tunable responsivity simultaneously with a wide-spectrum response in perovskites, which will significantly enhance the image recognition accuracy through the machine learning algorithm. Herein, we demonstrate a broadband neuromorphic visual sensor from visible (Vis) to near-infrared (NIR) by coupling all-inorganic metal halide perovskites (CsPbBr3) with narrow-bandgap lead sulfide (PbS). The PbS/CsPbBr3 heterostructure is composed of high-quality single crystals of PbS and CsPbBr3. Interestingly, the ion migration of CsPbBr3 with the implementation of an electric field induces the energy band dynamic bending at the interface of the PbS/CsPbBr3 heterojunction, leading to reversible, multilevel, and linearly tunable photoresponsivity. Furthermore, the reconfigurable and broadband photoresponse in the PbS/CsPbBr3 heterojunction allows convolutional neuronal network processing for pattern recognition and edge enhancements from the Vis to the NIR waveband, suggesting the great potential of the PbS/CsPbBr3 heterostructure in artificial intelligent vision sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.