Abstract

A generalization of the embedding approach for d-dimensional gravity based upon p-brane theories is proposed. We prove that the D-dimensional p-brane coupled to an antisymmetric tensor field of rank (p+1) provides the dynamical basis for the description of d=(p+1)-dimensional gravity in the isometric embedding formalism. By that we mean that the equations of motion following from this action describe any (p+1)-dimensional space–time (at least locally) once the antisymmetric tensor field is chosen appropriately. "Physical" matter appears in such an approach as a manifestation of a D-dimensional antisymmetric tensor (generalized Kalb–Ramond) background. For the simplest case, the Lorentz harmonic formulation of the bosonic string in a Kalb–Ramond background and its relation to a first order Einstein–Cartan approach for (d=2)-dimensional gravity is analyzed in some detail. We show that a general Poisson-sigma model structure emerges in this case. For the minimal choice of a free D=3 string an interesting "dual" formulation is found which has the structure of a Jackiw–Teitelboim theory, coupled minimally to a massive scalar field. Our approach is intended to serve as a preparation for the study of d-dimensional supergravity theory, either starting from the generalized action of free supersymmetric (d-1)-branes or D(d-1)-branes, or from the corresponding geometric equations ("rheotropic" conditions).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call