Abstract

International efforts to promote predictive toxicology incorporate some form of modeling based on the regularities, insights, and hypotheses gained from analyzing laboratory studies compiled in databases. While there has been a broad commentary on definitions, metadata, and test methodologies, all necessary to establishing data repositories, there has been less on translating the resulting insights into computational models. The recent use of a computational model to support a recommended exposure limit for nanoparticulate silver is an opportunity to examine physiologically based toxicokinetics in terms of data availability, model verification and validation, and regulatory acceptance. The resulting suggestions align with findings from the EU-US Roadmap Nanoinformatics 2030 and the 2018 acceptance of a computational model by the European Food Safety Authority.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call