Abstract
ScopeThe aim of the present study is to develop physiologically‐based kinetic (PBK) models for rat and human that include intestinal microbial and hepatic metabolism of zearalenone (ZEN) in order to predict systemic concentrations of ZEN and to obtain insight in the contribution of metabolism by the intestinal microbiota to the overall metabolism of ZEN.Methods and ResultsIn vitro derived kinetic parameters, apparent maximum velocities (V max) and Michaelis–Menten constants (K m) for liver and intestinal microbial metabolism of ZEN are included in the PBK models. The models include a sub‐model for the metabolite, α‐zearalenol (α‐ZEL), a metabolite known to be 60‐times more potent as an estrogen than ZEN. Integrating intestinal microbial ZEN metabolism into the PBK models revealed that hepatic metabolism drives the formation of α‐ZEL. Furthermore, the models predicted that at the tolerable daily intake (TDI) of 0.25 µg kg−1 bw the internal concentration of ZEN and α‐ZEL are three‐orders of magnitude below concentrations reported to induce estrogenicity in vitro.ConclusionIt is concluded that combining kinetic data on liver and intestinal microbial metabolism in a PBK model facilitates a holistic view on the role of the intestinal microbiota in the overall metabolism of the foodborne xenobiotic ZEN and its bioactivation to α‐ZEL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.