Abstract

A two-step sequential deposition method has been extensively employed to prepare the CH3NH3PbI3 active layer from the PbI2 precursor in perovskite solar cells (PSCs). The variation of the photovoltaic performance of PSCs made by this method was always attributed to different dipping times that induce complete/incomplete conversion of PbI2 into CH3NH3PbI3. To solve this issue, we employed a solvent vapor annealing (SVA) method to prepare PbI2 crystallites with large grain size for preparation of high quality perovskite. With this method, the increased PbI2 dipping time in CH3NH3I solution was found to reduce the photovoltaic performance of resulting PSCs without a significant change in PbI2/CH3NH3PbI3 contents in the perovskite films. We attribute this abnormal reduction of the photovoltaic performance to intercalation/deintercalation of the PbI2 core with a CH3NH3PbI3 shell, which causes the doping effect on both the PbI2 and CH3NH3PbI3 crystal lattices and the formation of a CH3NH3PbI3 capping layer on the surface, as revealed by UV-vis absorption, X-ray diffraction, FT-IR, and scanning electron microscope measurements. Based on our findings, a multistep dipping-drying process was employed as an alternative method to improve the crystalline quality. The method achieved power conversion efficiency up to 11.4% for the compact layer free PSC sharing a simple device structure of ITO/perovskite/spiro-OMeTAD/Ag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.