Abstract

A new non-centrosymmetric (NCS) polar sulfide PbGa2GeS6 has been synthesized by a self-fluxing method at a relatively low temperature of 550 °C with desirable properties for nonlinear optical (NLO) applications. Its structure is built by three types of infinite chains intersecting in three dimensions, where the NCS building units are tetragonal pyramids of PbS4 and tetrahedra of MS4 (M = Ga, Ga/Ge). Powder of PbGa2GeS6 exhibits phase-matchable (PM) second-order NLO activity with strong second harmonic generation (SHG) intensity of 0.5× AgGaS2 at the particle size of 150–210 μm, high laser-induced damage threshold (LIDT) of 5× AgGaS2, and a wide transmission range in infrared (IR) region (0.47–23 μm). First-principles calculations suggest that the macroscopic SHG response is originated from the cooperation of the lone pairs on Pb2+ and MS4 (M = Ga, Ga/Ge) tetrahedra. Considering its strong PM SHG response, high LIDT, wide IR transmission range, and relatively low synthesis temperature, PbGa2GeS6 should be ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.