Abstract

FeO is a crucial component of the Earth's core, and its thermodynamic properties are essential to developing more accurate core models. It is also a notorious correlated insulator in the NaCl-type (B1) phase at ambient conditions. It undergoes two polymorphic transitions at 300 K before it becomes metallic in the NiAs-type (B8) structure at ~100 GPa. Although its phase diagram is not fully mapped, it is well established that the B8 phase transforms to the CsCl-type (B2) phase at core pressures and temperatures. Here, we report a successful ab initio calculation of the B8↔B2 phase boundary in FeO at Earth's core pressures. We show that fully anharmonic free energies computed with the Perdew-Burke-Ernzerhof-generalized gradient approximation coupled with thermal electronic excitations reproduce the experimental phase boundary within uncertainties at P > 255 GPa, including the largely negative Clapeyron slope of -52 MPa/K. This study validates the applicability of a standard density functional theory functional to FeO under Earth's core conditions and demonstrates the theoretical framework that enables complex predictive studies of this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.