Abstract

Concentrations of polybrominated dibenzo-p-dioxins, and -dibenzofurans (PBDDs/Fs) and polychlorinated dibenzo-p-dioxins, and -dibenzofurans (PCDDs/Fs), were determined in the pre- and post-air pollution control system (APCS) flue gas of a municipal waste combustor (MWC). Operational transients of the combustor were found to considerably increase levels of PBDDs/Fs and PCDDs/Fs compared to steady state operation, both for the raw and clean flue gas; ΣPBDDs/Fs increased from 72.7 to 700 pg dscm(-1) in the raw, pre-APCS gas and from 1.45 to 9.53 pg dscm(-1) in the post-APCS flue gas; ΣPCDDs/Fs increased from 240 to 960 ng dscm(-1) in the pre-APCS flue gas, and from 1.52 to 16.0 ng dscm(-1) in the post-APCS flue gas. The homologue profile of PBDDs/Fs and PCDDs/Fs in the raw flue gas (steady state and transients) was dominated by hexa- and octa-isomers, while the clean flue gas homologue profile was enriched with tetra- and penta-isomers. The efficiency of the APCS for PBDD/F and PCDD/F removal was estimated as 98.5% and 98.7%, respectively. The cumulative TEQ(PCDD/F+PBDD/F) from the stack was dominated by PCDD/F: the TEQ of PBDD/F contributed less than 0.1% to total cumulative toxic equivalency of MWC stack emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call