Abstract

ABSTRACT Influenza H3N8 viruses have been recovered frequently from wild bird species, including Anseriformes (primarily from migratory ducks) and Charadriiformes (primarily from shorebirds). However, little attention has been given to the transmission ability of H3N8 avian influenza viruses among mammals. Here, we study the potential human health threat and the molecular basis of mammalian transmissibility of H3N8 avian influenza viruses isolated from wild bird reservoirs. We classified eight H3N8 viruses into seven different genotypes based on genomic diversity. Six of eight H3N8 viruses isolated naturally from wild birds have acquired the ability to bind to the human-type receptor. However, the affinity for α-2,6-linked SAs was lower than that for α-2,3-linked SAs. Experiments on guinea pigs demonstrated that three viruses transmitted efficiently to direct-contact guinea pigs without prior adaptation. Notably, one virus transmitted efficiently via respiratory droplets in guinea pigs but not in ferrets. We further found that the PB1 S524G mutation conferred T222 virus airborne transmissibility between ferrets. We also determined that the 524G mutant increased viral pathogenicity slightly in mice compared with the WT (wild type). Based on these results, we elucidated the potential human health threat and molecular basis of mammalian transmissibility of H3N8 influenza viruses. We emphasized the need for continued surveillance of the H3N8 influenza viruses circulating in birds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.