Abstract
Pb can enhance blood-cerebrospinal fluid barrier (BCSFB) permeability and accumulate in brain tissue, leading to central nervous system (CNS) dysfunction. Choroid plexus (CP) epithelial cells are the main components of the BCSFB with crucial functions in BCSFB maintenance. However, the mechanism by which Pb exposure affects CP epithelial cells remains unclear. Here, ferroptosis was identified as the major programmed cell death modality by sophisticated high-throughput sequencing and biochemical investigations in primary cultured CP epithelial cells following Pb exposure. Bioinformatics analysis using the ferroptosis database revealed that 16 ferroptosis-related genes were differentially expressed in primary cultured CP epithelial cells following Pb exposure. Among them, Gpx4, Slc7a11, Tfrc, and Slc40a1 were hub ferroptosis-related genes. In addition, CP epithelial cells can be impaired when the concentration of the Pb2+ reached 2050 μg/L (10 μM PbAc), which included the decrease of cell viability, Gpx4 and Slc7a11 proteins expression, etc. Moreover, inhibition of ferroptosis enhanced CP epithelial cell viability and reduced BCSFB permeability in vitro following Pb exposure. In summary, ferroptosis of CP epithelial cells is involved in BCSFB dysfunction following Pb exposure. Gpx4, Slc7a11, Tfrc, and Slc40a1 are hub ferroptosis-related genes in CP epithelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.