Abstract

Radio Frequency (RF) fingerprinting is one physical-layer authentication method for wireless communication, which uses the unique hardware characteristic of the transmitter to identify its true identity. To improve the performance of RF Fingerprint (RFF) based on preamble with fixed duration, a nonlinear RF fingerprinting method based on payload symbols is proposed for the wireless OFDM communication with the bit mapping scheme of QPSK. The wireless communication system is modeled as a Hammerstein system containing the nonlinear transmitter and multipath fading channel. A parameter separation technique based on orthogonal polynomial is presented for the estimation of the parameters of the Hammerstein system. The Hammerstein system parameter separation technique is firstly used to estimate the linear parameter with the training signal, which is used to compensate the adverse effect of the linear channel for the demodulation of the successive payload symbols. The demodulated payload symbols are further used to estimate the nonlinear coefficients of the transmitter with the Hammerstein system parameter separation technique again, which is used as the novel RFF for the authentication of the QPSK-OFDM device. Numerical simulations have verified the proposed method, which can also be extended to the OFDM signals with other bit mapping schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.