Abstract

BackgroundCortical and subcortical cognitive impairments are usually found in dementia with Lewy bodies (DLB). Roughly, they comprise visuo-constructive/executive function and attention/processing speed impairments, whereas memory would remain relatively spared. In this study, we focused on the neuro-anatomical substrates of attention and processing speed, which is still poorly understood. For the purpose of the study, we examined the correlations between behavioral scores measuring the speed of processing and the degree of cerebral atrophy in patients with prodromal to moderate DLB.MethodsNinety-three prodromal to moderate DLB patients (mean MMSE = 25.5) were selected to participate in the study as well as 28 healthy elderly subjects (mean MMSE = 28.9), matched in terms of age and educational level. The Trail Making Test A (TMTA) and the Digit Symbol Substitution Test (DSST) were used to assess attention and processing speed. Behavioral performances were compared between patients and healthy control subjects. Three-dimensional MRI images were acquired for all participants, and correlational analyses were performed in the patient group using voxel-based morphometry (VBM).ResultsThe behavioral results on both the TMTA (p = .026) and the DSST (p < .001) showed significantly impaired performances in patients in comparison with control subjects. In addition, correlational analyses using VBM revealed for the TMTA negative correlations in the caudate nucleus (left cluster peak significant at .05 FWE corrected), the putamen, the left thalamus, and the subthalamic nuclei (p < .05 FDR corrected). Some positive correlations associated with the DSST were found in the right inferior frontal gyrus, the left thalamus, and the left cerebellum (p < .001 uncorrected).ConclusionsThe behavioral results are in line with the literature on the DLB cognitive profile and confirm the existence of attention and processing speed impairment. Interestingly, VBM analysis revealed the involvement of the basal ganglia, in particular, the left caudate nucleus, which is part of the attention cerebral network, suggesting an important role of this structure for attentional processing speed. This also suggests the clinical implication of damage in this region relatively early in the course of the disease.

Highlights

  • Cortical and subcortical cognitive impairments are usually found in dementia with Lewy bodies (DLB)

  • We found an attentional deficit by means of tasks such as the Trail Making Test A (TMTA) and the Digit Symbol Substitution Test (DSST) that are used in clinical routine

  • In accordance with our hypothesis, volumetric analyses highlighted the correlations between altered attentional scores and decreased volumes in the basal ganglia: in the striatum and subthalamic nucleus for the TMTA, in the left thalamus for both tasks, and in the right inferior frontal gyrus (BAs 44 and 45) and the left cerebellum for the DSST

Read more

Summary

Introduction

Cortical and subcortical cognitive impairments are usually found in dementia with Lewy bodies (DLB) They comprise visuo-constructive/executive function and attention/processing speed impairments, whereas memory would remain relatively spared. Essential to the diagnosis of DLB remains the progressive cognitive decline, with deficits on tests of attention, executive functions, and visuo-perception in the foreground, which may occur early [4, 5]. Among these deficits, attentional dysfunction, which is typically assessed in clinical routine by measures of speed of processing, is a prominent and distinguishing neuropsychological feature of DLB as compared to AD at the prodromal stages [4, 6]. Previous studies have indicated a disruption of attention in the visual modality in DLB as compared to AD and Parkinson’s disease (PD) patients [8,9,10,11]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.