Abstract

Osteosarcoma (OS) is the most common primary malignant bone tumor diagnosed in children and adolescents. Unfortunately, OS patients with metastatic or recurrent disease are highly resistant to front line chemotherapy that significantly limits the long-term survival rate. Since majority of chemotherapeutic agents used in OS work by generating DNA damages, enhanced DNA repair pathways are generally associated with chemoresistance in OS treatment. However, the exact mechanisms of chemoresistance in OS are not fully understood. Our study found that paralogue of XRCC4 and XLF (PAXX), which was identified recently as a novel factor of non-homologous end joining (NHEJ), is upregulated in chemoresistant OS cells. Importantly, PAXX deficiency re-sensitizes chemoresistant OS cells to doxorubicin and cisplatin. Mechanistically, chemoresistance to doxorubicin or cisplatin results in enhanced PAXX-Ku70 interaction and elevated NHEJ efficiency. We also identified a small molecule M11 that interrupts PAXX-Ku70 interaction and re-sensitizes chemoresistant OS cells to doxorubicin and cisplatin. Thus, our data provide evidence that PAXX could serve as a novel target to overcome chemoresistance in OS treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call