Abstract
Efficient group A streptococcus (GAS) invasion of mammalian cells requires fibronectin (Fn) binding proteins, such as M1 and PrtF1/SfbI, that bridge bacteria to integrins and activate cellular signalling for ingestion. Previous studies of GAS invasion, mediated by both proteins, suggest a common signalling pathway. However, distinct cellular morphological changes at the port of bacterial entry suggest that different signals are also induced. Here we report that paxillin is phosphorylated in response to Fn-bound GAS that express either M1 or PrtF1/SfbI protein, but is not phosphorylated in response to a mutant deficient in both proteins. Inhibition of paxillin phosphorylation by a tyrosine kinase inhibitor, PP2, or by expression of a dominant negative form of paxillin significantly reduced invasion by M1+ but did not affect ingestion of PrtF1/SfbI+ strains. In contrast, another tyrosine inhibitor, genistein, did not significantly prevent paxillin phosphorylation and had no effect on ingestion of the M1+ strain, but reduced PrtF1/SfbI-mediated entry. This suggests that paxillin phosphorylation is induced by both proteins but only required for M1-mediated invasion. A bifurcation point, downstream of integrin-linked kinase (ILK) and phosphoinositide 3-kinase, likely accounts for the distinct morphological changes. Furthermore, ILK activity is indispensable for M1-induced paxillin recruitment and phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.