Abstract

The synchronized differentiation of neuronal and vascular tissues is crucial for normal organ development and function, although there is limited information about the mechanisms regulating the coordinated development of these tissues. The choroid vasculature of the eye serves as the main blood supply to the metabolically active photoreceptors, and develops together with the retinal pigmented epithelium (RPE). Here, we describe a novel regulatory relationship between the RPE transcription factors Pax6 and Sox9 that controls the timing of RPE differentiation and the adjacent choroid maturation. We used a novel machine learning algorithm tool to analyze high resolution imaging of the choroid in Pax6 and Sox9 conditional mutant mice. Additional unbiased transcriptomic analyses in mutant mice and RPE cells generated from human embryonic stem cells, as well as chromatin immunoprecipitation and high-throughput analyses, revealed secreted factors that are regulated by Pax6 and Sox9. These factors might be involved in choroid development and in the pathogenesis of the common blinding disease: age-related macular degeneration (AMD).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.