Abstract
A previous study demonstrated that CTCF (CCCTC binding factor) regulates homeobox Pax6 gene expression in early embryonic stages and plays a dominant role in eye development. The purpose of the present study was to explore further the mechanism of CTCF controlling Pax6 gene expression in human retinoblastoma (Rb) cells and in the development of chicken and mouse retinas. Northern and Western analyses were used to detect expressions of CTCF and Pax6 in Rb cells. Pax6 transcription reporter and deletion mutants were used to study the regulatory interaction between CTCF and Pax6 in Rb cells and in the retina of chicken embryos. CTCF transgenic chicken embryos and mice were established by lipofection and microinjection of linearized cytomegalovirus (CMV)-CTCF construct into fertilized eggs and mouse oocytes, respectively. Injected oocytes were implanted in the uterus of foster mothers through microinjection into the ovarian duct. The expression of CTCF and Pax6 was determined in embryo sections by immunochemistry. Stimulation of Rb cells with 10% FBS resulted in an increase in CTCF expression and a decrease in Pax6 expression. To study the regulatory mechanism, the Pax6 reporter and its deletion mutant activities were determined in transfected Rb cells and chicken embryonic retinas, revealing that CTCF interacts with the Pax6 gene in Rb cells through transcription control in the 5'-flanking region upstream from the Pax6 P0 promoter. Overexpression of CTCF in Rb cells suppressed Pax6 reporter activity and downregulated endogenous Pax6 expression. In contrast, downregulation of CTCF expression by knockdown of CTCF mRNA using specific small interfering (si)RNA markedly enhanced Pax6 expression in Rb cells. Further study in CTCF transgenic mouse embryos verified that overexpression of CTCF suppressed Pax6 gene expression in the retina. CTCF plays an important role in regulating Pax6 expression in Rb cells and in the developmental retina, and the regulation of Pax6 gene expression by CTCF in the retina is through transcriptional regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.