Abstract

The mammalian neocortex comprises two major neuronal subtypes; interneurons derived from the ganglionic eminence (GE) and projection neurons from the cortical ventricular zone (VZ). These separate origins necessitate distinct pathways of migration. Using mouse genetics and embryonic forebrain slice culture assays, we sought to identify substrates and/or guidance molecules for nonradial cell migration (NRCM). Mice carrying a mutation in Pax6 (Sey(-/-)), a paired domain transcription factor, are reported to have increased numbers of cortical inhibitory interneurons, suggesting that Pax6 could induce inhibitors of interneuron development or alternatively play a repressive role in guiding NRCM and/or specifying interneurons. Unexpectedly, we found a cell nonautonomous reduction in the distance Sey-/- neurons migrated, reflecting a disorganized migration, with frequent changes in direction. In contrast, no difference in the number of nonradially migrating GE cells was observed in Sey-/- mice. Our data indicate that the increased numbers of interneurons observed in Sey-/- do not result from an increased rate or number of nonradially migrating cells; instead, loss of Pax6 results in the ectopic specification of interneurons in the cortical VZ. Further, our data indicate that the known axonal disorganization in Sey-/- mice contributes to the observed reduced distance of NRCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.