Abstract

Renal anomaly is commonly found among patients with loss of TBX1 gene, encoding an important transcriptional factor implicated in numerous developmental processes. Pax2 is a member of the "paired-box" (PAX) family of homeotic genes that orchestrates the patterns of gene expression in specific cells during nephrogenesis. In this study, we hypothesized that Pax2 might activate expression of TBX1, a member of T-box family that closely involving in kidney development. Immunohistochemical and immunofluorescence staining was performed to detect TBX1 expression in E16.5 embryonic rat kidney, while luciferase assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) assay were used to confirm the interaction between the Pax2 protein and TBX1 genes. TBX1 was expressed in the cytoplasm of renal tubular epithelial cells in the cortex of E16.5 fetal rat kidney. Inspection of the 5'-flanking sequence of the TBX1 gene identified a putative Pax2 recognition motif (TBX1-577). Luciferase assay and EMSA confirmed this novel promoter region of TBX1 that directly interacted with Pax2, and a site mutation could abolish the transcriptional activation of the TBX1 promoter by Pax2. ChIP assay of the Pax2-TBX1 promoter complex from human kidney epithelial cells further confirmed that endogenous Pax2 interacted with TBX1 promoter region. Thus, Pax2 directly regulates TBX1 expression in vivo. These findings suggest that Pax2 may regulate the TBX1 expression through specific binding to the TBX1 promoter, which may shed light on the potential mechanism of Pax2 and TBX1 in nephrogenesis and renal malformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call