Abstract

Cargo drones are a cutting-edge solution that is becoming increasingly popular as flight times extend and regulatory frameworks evolve to accommodate new delivery methods. The aim of this paper was to comprehensively understand cargo drone dynamics and guide their effective deployment in Greece. A 5 kg payload quadrotor with versatile loading mechanisms, including a cable-suspended system and an ultra-light box, was manufactured and tested in five Greek cities. A comprehensive performance evaluation and analysis of flight range, energy consumption, altitude-related data accuracy, cost-effectiveness, and environmental were conducted. Based on hands-on experimentation and real-world data collection, the study proposes a novel data-driven methodology for strategically locating charging stations and addressing uncertainties like weather conditions and battery discharge during flights. Results indicate significant operational cost savings (89.44%) and a maximum emissions reduction (77.42%) compared to conventional transportation. The proposed strategic placement of charging stations led to substantial reductions in travel distance (41.03%) and energy consumption (56.73%) across five case studies in Greek cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call