Abstract

AbstractThe high‐voltage spinel cathode LiNi0.5Mn1.5O4 (LNMO) with no cobalt and low nickel content is promising for lithium‐ion batteries due to its high energy and power densities, good thermal stability, and low cost. However, its high operating voltage (≈4.7 V) results in a decomposition of the electrolyte, severe chemical crossover, and deterioration of electrode‐electrolyte interphases (EEIs), hindering its practical viability. It is demonstrated here that by electrochemically pre‐cycling the graphite in an electrolyte containing 30 wt.% fluoroethylene carbonate, a robust LiF‐rich artificial solid electrolyte interphase can be constructed for surface protection; on the other hand, an electrochemical pre‐lithiation of Fe‐doped LNMO serves as a lithium source for graphite at a full‐cell voltage of 2.6 V. As a result, the full cells with the as‐modified electrodes deliver a high capacity of 129 mA h g−1 with an excellent capacity retention of 93% after 200 cycles, vastly outperforming the full cells with fresh electrodes (120 mA h g−1 initial capacity with 78% retention). Finally, pathways toward long‐life graphite||LNMO full cells are pictured based on the inspirations from the electrochemical modifications and in‐depth analyses of the EEIs in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.