Abstract

BackgroundMenopausal women are challenged by the adverse effects of estrogen loss on energy, mood, cognitive function, and memory. These stresses are compounded by increased risks for cardiovascular disease, osteoporosis, and cancer. Known to have neuroprotective, cardio-protective, anti-oxidative and anti-carcinogenic effects, Rhodiola rosea extracts have also been shown to improve energy, mood, cognitive function and memory. PurposeWe propose that R. rosea be investigated for use as a potential selective estrogen receptor modulator (SERM) in the prevention and treatment of menopause-related fatigue, stress, depression, cognitive decline, memory impairment, cardiovascular disease, osteoporosis and cancer. MethodThis paper briefly reviews the relationship between estrogen decline and menopause-related health risks, the molecular mechanisms underlying estrogenic effects on health, and the evidence indicating beneficial effects of R. rosea extracts on these mechanisms and health risks. Mechanisms include non-genomic and genomic effects, for example: activation of intra-cellular signal transduction pathways by binding to estrogen receptors, ERα-mediated activation of endothelial nitric oxide synthase with increased nitric oxide release; and anti-inflammatory effects, counteracting TNFα by inhibiting nuclear factor-Kappa-B (NF-KB) and protection of osteoblasts from hydrogen peroxide. A clinical case illustrating treatment of a menopausal woman with R. rosea is presented. Risks, benefits, gaps in knowledge, and future directions are discussed. ConclusionNumerous lines of evidence indicate that R. rosea should be investigated as a potential selective estrogen receptor modulator (SERM) to prevent, delay or mitigate menopause-related cognitive, psychological, cardiovascular and osteoporotic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.