Abstract
The investigation delves into understanding how the Pauli exclusion principle influences the bare potential between atomic nuclei through the application of advanced theoretical methodologies. Specifically, the application of the novel Frozen-Hartree-Fock (DCFHF) technique is employed. The resulting potentials demonstrate a noticeable repulsion at short distances, attributed to the effects of the Pauli exclusion principle. To account for dynamic phenomena, such as nucleon transfer processes, the density-constrained time-dependent Hartree-Fock (DC-TDHF) method is utilized. This approach integrates isovector contributions into the potential, shedding light on their influence on fusion reactions. Notably, the inclusion of isovector effects leads to a reduction or enhancement in the inner part of the potential, suggesting a nuanced role of transfer in the fusion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.