Abstract

Transition rates between coupled states in a quantum system depend on the density of available final states. The radiative decay of an excited atomic state has been suppressed by reducing the density of electromagnetic vacuum modes near the atomic transition. Likewise, reducing the density of available momentum modes of the atomic motion when it is embedded inside a Fermi sea will suppress spontaneous emission and photon scattering rates. Here we report the experimental demonstration of suppressed light scattering in a quantum degenerate Fermi gas. We systematically measured the dependence of the suppression factor on the temperature and Fermi energy of a strontium quantum gas and achieved suppression of scattering rates by up to a factor of 2 compared with a thermal gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.