Abstract
A pattern is a string consisting of variables and terminal symbols, and its language is the set of all words that can be obtained by substituting arbitrary words for the variables. The membership problem for pattern languages, i.e., deciding on whether or not a given word is in the pattern language of a given pattern is NP-complete. We show that any parameter of patterns that is an upper bound for the treewidth of appropriate encodings of patterns as relational structures, if restricted, allows the membership problem for pattern languages to be solved in polynomial time. Furthermore, we identify new such parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.