Abstract

Both the striatal-thalamo-cortical (STC) circuit and cerebello-thalamo-cortical (CTC) circuit play a critical role in Parkinson's disease (PD). Resting-state functional MRI was used to assess functional connectivity (FC) focusing on the basal ganglia (BG) and cerebellum among early-stage drug-naïve PD patients with tremor-dominant (TD) PD patients with postural instability and gait dysfunction (PIGD) and healthy controls (HCs). Compared to HCs, both PD subgroups had higher FC between the cerebellum and paracentral lobule, sensorimotor areas; lower FC between the BG and superior frontal gyrus, and within the BG circuit; PD-TD patients showed higher FC between the BG and fusiform, paracentral lobule, cerebellum Lobule VI, and between the cerebellum and supplementary motor areas (SMA), insula; lower FC between the BG and rectus, sensorimotor areas, and within the cerebellum circuit; PD-PIGD patients showed higher FC between the cerebellum and middle frontal gyrus, precuneus; lower FC between the BG and cerebellum Crus II. Besides, compared to PD-PIGD patients and HCs, PD-TD patients had higher FC between the BG and calcarine region. In all PD patients, FC in paracentral lobule, SMA, and cerebellum Lobule VI positively correlated with tremor scores, and FC in calcarine area positively correlated with tremor scores, but negatively correlated with PIGD scores. Our findings mainly suggested that the BG and cerebellum had hyper-connectivity with the cortical motor cortex, and the BG had prominent hyper-connectivity with the visual cortex in early-stage PD-TD patients. These findings may be helpful for facilitating the further understanding of potential mechanisms in the early-stage PD-TD. However, our results are preliminary, and further investigations are needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call