Abstract

Results of a numerical simulation of steady axisymmetric supersonic flows in convergent conical ducts and in overexpanded jets are presented. The characteristic feature of these compression flows is the formation of an initial longitudinally curved shock wave with intensity increasing downstream and toward the flow axis, which is finalized by the generation of a central Mach disk. Computations have demonstrated patterns of an irregular interaction of these shocks followed by the formation of a triple-shock configuration, including a reflected shock and a shear layer with entropy varying across the layer. The formation of triple-shock configurations is analogous to the configurations known for the steady inviscid two-dimensional flows where the irregular reflection of a wedge-generated shock from a wall with Mach stem formation occurs. Either a single triple-shock Mach configuration occurs or a triple-shock configuration corresponding to the von Neumann paradox condition is formed at the considered flow Mach numbers and initial angles of deflection to the axis of the flow behind the longitudinally curved shock wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call