Abstract

The ‘Khasi hill sal’ forest ecosystem in Meghalaya, India represents the easternmost limit of sal distribution. We tested if tree diversity and compositional heterogeneity of this ecosystem was higher than other sal-dominated forests due to moister environment. Vegetation was sampled in 11 transects of 10 m width and up to 500 m length covering 5.2 ha area. All stems ≥ 10 cm girth at breast height were enumerated. We found a pattern of mixed dominance of Shorea robusta (sal) and Schima wallichii and co-dominance of Pinus kesiya and Careya arborea. The Shannon’s diversity index (H′) was 3.395 nats. This value is remarkably high and competitive to that of moist sal forests of eastern Himalayan foothills and sal-dominated forests of Tripura. A high value of H′ was manifested by: a) high species richness (S = 123), b) good equitability (70.6%), c) ‘fair’ resource apportionment, and d) abundance of rare species (84% species with less than one per cent of total individuals, 67% species with two or less individuals ha−1 and 59% species with one or less individuals ha−1). The compositional heterogeneity was ‘fair’ (Whittaker’s βw = 3.15). The presence of Fagaceae with six species commanding 4.3% of importance value (IVI) and of a pine (P. kesiya) in sal forest was remarkable. As many as 58 species showed ‘low density (≤ 10 individuals ha−1), uniform dispersion’, five species achieved ‘higher density (> 10 individuals ha−1), uniform dispersion’ and six of the top 10 species were ‘clumped’. The forest showed an exponential demographic curve illustrating ‘good’ regeneration of an expanding community. Vertical stratification was simple with a poor canopy and fair subcanopy, which together with low basal area (15.65 m2 · ha−1 for individuals ≥ 10 cm gbh) indicated logging of mature sal trees in the past. The ‘Khasi hill sal’ forest ecosystem is richer in alpha and beta diversity than most sal-dominated forests, but past logging has reduced basal area. Selective removal of small timber and firewood, slash-and-burn agriculture and recurrent burning of forest floor are the principal anthropogenic factors controlling forest structure and regeneration of species.

Highlights

  • The ‘Khasi hill sal’ forest ecosystem in Meghalaya, India represents the easternmost limit of sal distribution

  • The present study reveals that the ‘Khasi hill sal’ forests on northern slope of Meghalaya plateau bear close similarity with moist sal forests of eastern Himalayan foothills in Darjeeling and sal-dominated moist deciduous forests of Tripura in having high species richness, Shannon’s diversity and commonness of species

  • The number of species across transects did not vary greatly, but species composition among transects differed appreciably resulting into a fair compositional heterogeneity and a high value of Shannon’s diversity (H′ = 3.395 nats)

Read more

Summary

Introduction

The ‘Khasi hill sal’ forest ecosystem in Meghalaya, India represents the easternmost limit of sal distribution. We tested if tree diversity and compositional heterogeneity of this ecosystem was higher than other sal-dominated forests due to moister environment. Sal (Shorea robusta)-dominated forest ecosystems occur mainly in India, Nepal, Bangladesh and Bhutan 1921), and as a single forest formation, occupy maximum geographical area of nearly 12 million ha in South. The exceptional presence of trees of sal is reported from Myanmar. Sal predominates in Vindhya and Satpura ranges. The eastern limit of natural range of sal forests is in the. 2000 km long arc of sal distribution at the foothills (terai) of Himalaya extends from Shivalik hills in Himachal Pradesh to Sonitpur district in northern reaches of Brahmaputra

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.